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Summary

As the first line of defence against pathogens, cells mount an innate immune response, which is 

highly variable from cell to cell. The response must be potent yet carefully controlled to avoid 

self-damage. How these constraints have shaped the evolution of innate immunity remains poorly 

understood. Here, we characterise this programme’s transcriptional divergence between species 

and expression variability across cells. Using bulk and single-cell transcriptomics in fibroblasts 

and mononuclear phagocytes from different species, challenged with immune stimuli, we reveal a 

striking architecture of the innate immune response. Transcriptionally diverging genes, including 

cytokines and chemokines, vary across cells and have distinct promoter structures. Conversely, 

genes involved in response regulation, such as transcription factors and kinases, are conserved 

between species and display low cell-to-cell expression variability. We suggest that this unique 

expression pattern, observed across species and conditions, has evolved as a mechanism for fine-

tuned regulation, achieving an effective but balanced response.

The innate immune response is a cell-intrinsic defence program that is rapidly upregulated 

upon infection in most cell types. It acts to inhibit pathogen replication while signalling the 

pathogen’s presence to other cells. This programme involves modulation of several cellular 

pathways, including production of antiviral and inflammatory cytokines, upregulation of 

genes functioning in pathogen restriction, and induction of cell death1,2.

An important characteristic of the innate immune response is the rapid evolution that many 

of its genes have undergone along the vertebrate lineage3,4. This is often attributed to 

pathogen-driven selection5–7.

Another hallmark of this response is its high level of heterogeneity among responding cells: 

various studies have shown that cells display extensive cell-to-cell variability in response to 

pathogen infection8,9 or to pathogen-associated molecular patterns (PAMPs)10,11. The 

functional importance of this cell-to-cell variability is unclear.

These two characteristics – rapid divergence in the course of evolution and high cell-to-cell 

variability – seem to be at odds with the strong regulatory constraint imposed on the host 

immune response: the need to execute a well-coordinated and carefully balanced programme 

to avoid tissue damage and pathological immune conditions12–15. How this tight regulation 

is maintained despite rapid evolutionary divergence and high cell-to-cell variability remains 

an open question, central to our understanding of the innate immune response and its 

evolution.

Here, we study the evolution of this programme using two different cells types – fibroblasts 

and mononuclear phagocytes - across different mammalian clades challenged with several 

immune stimuli (Fig. 1a).

Our main experimental system uses primary dermal fibroblasts, which are commonly 

employed in immunological studies8,13. We compare the response of fibroblasts from 

primates (human and macaque) and rodents (mouse and rat) to poly I:C, a synthetic dsRNA 

(Fig. 1a, left). Poly I:C is frequently used to mimic viral infection as it rapidly elicits an 

antiviral response16.

Hagai et al. Page 2

Nature. Author manuscript; available in PMC 2019 April 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



We comprehensively characterize the transcriptional changes between species and among 

individual cells in their innate immune response. We use population (bulk) transcriptomics 

to investigate transcriptional divergence between species, and single-cell transcriptomics to 

estimate cell-to-cell variability in gene expression. Using promoter sequence analyses along 

with ChIP-seq, we study how changes in the expression of each gene between species and 

across cells relate to the architecture of its promoter. Furthermore, we examine the 

relationship between cross-species divergence in gene sequence and expression and 

constraints imposed by host-pathogen interactions.

Additionally, we use a second system – bone marrow-derived mononuclear phagocytes from 

mouse, rat, rabbit and pig challenged with lipopolysaccharide (LPS), a commonly used 

PAMP of bacterial origin (Fig. 1a, right).

Taken together, these two systems provide insights into the architecture of the immune 

response across species, cell types and immune challenges.

Results

Transcriptional divergence in immune response

First, we studied the transcriptional response of fibroblasts to dsRNA (poly I:C) stimulation 

across the four species (human, macaque, rat and mouse). We generated bulk RNA-

sequencing data for each species after 4 hours of stimulation, along with respective controls 

(see Fig. 1a and Methods for detailed experimental design).

In all species, we observe rapid upregulation of expected antiviral and inflammatory genes, 

including IFNB, TNF, IL1A and CCL5, following dsRNA treatment (see also 

Supplementary Table 3). Focusing on one-to-one orthologs, we performed correlation 

analysis between species and observed a similar transcriptional response (Spearman 

correlation, p-value < 10-10 in all comparisons; Extended Data Fig. 1), as reported in other 

immune contexts17–19. Furthermore, the response tends to be more strongly correlated 

between closely related species, similar to other expression programmes20–24.

We characterized the differences in response to dsRNA between species for each gene, using 

this cross-species bulk transcriptomics data. While some genes, such as the NF-κB subunits 

RELB and NFKB2, have a similar response across species, other genes respond differently 

between the primate and the rodent clades (Fig. 1b, left). For example, IFI27 (a restriction 

factor against numerous viruses) is strongly upregulated in primates but not in rodents, while 

DAXX (an antiviral transcriptional repressor) exhibits the opposite behaviour.

Similarly, in our second experimental system, the LPS-stimulated mononuclear phagocytes 

from mouse, rat, rabbit, and pig (Fig. 1b, right), we observe genes with comparable response 

across species (e.g. NFKB2), while others are highly upregulated only in specific clades 

(e.g. PHLDA1).

To quantify transcriptional divergence in immune response between species, we focused on 

genes that are differentially expressed during the stimulation (see Methods). For simplicity, 

we refer to these genes as “responsive genes” (Fig. 1c). In this analysis, we study the subset 
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of these genes with one-to-one orthologs across the studied species. There are 955 such 

genes in dsRNA-stimulated human fibroblasts and 2,336 genes in mouse LPS-stimulated 

phagocytes. We define a measure of response divergence by calculating the differences 

between the fold change estimates while taking the phylogenetic relationship into account 

(Methods, Supplementary Figures 1-7 and Supplementary Table 4).

For subsequent analyses, we split the 955 genes responsive in fibroblasts into three groups 

based on their level of response divergence: (1) highly divergent dsRNA-responsive genes 

(the top 25% genes with the highest divergence values in response to dsRNA across the four 

studied species), (2) lowly divergent dsRNA-responsive genes (the bottom 25%), and (3) 

genes with medium divergence across species (the middle 50%) (Fig 1c). We performed an 

analogous procedure for the 2,336 LPS-responsive genes in phagocytes.

Promoter architecture of diverging genes

Next, we tested whether divergence in transcriptional response is reflected in the 

conservation of promoter function and sequence. Using ChIP-seq, we profiled the active 

histone marks in the fibroblasts of all species. We observe that the presence of H3K4me3 

mark in promoter regions of highly divergent genes is significantly less conserved between 

human and rodents than in promoters of lowly divergent genes (Extended Data Fig. 2).

We then used the human H3K4me3 ChIP-seq peaks to define active promoter regions of the 

responsive genes in human fibroblasts. We show that the density of transcription factor 

binding motifs (TFBMs) in the active promoter regions of highly divergent genes is 

significantly higher than in lowly divergent genes (Fig. 2a). Interestingly, when comparing 

the conservation of the core promoter regions in highly versus lowly divergent dsRNA-

responsive genes, we observe that genes that highly diverge in response show higher 

sequence conservation in this region (Fig. 2b).

This surprising discordance may be related to the fact that promoters of highly and lowly 

divergent genes have distinctive architectures, associated with different constraints on 

promoter sequence evolution18,25,26. Notably, promoters containing TATA-box elements 

tend to have most of their regulatory elements in regions immediately upstream of the 

transcription start site (TSS). These promoters are thus expected to be more conserved. The 

opposite is true for CpG island (CGI)26,27 promoters. Indeed, we found that TATA-boxes 

are associated with higher transcriptional divergence, while genes with CGIs diverge more 

slowly, both in fibroblasts and phagocytes (Fig. 2c and Extended Data Fig. 3). Thus, a 

promoter architecture enriched with TATA-boxes and depleted of CGIs is associated with 

higher transcriptional divergence, while entailing higher sequence conservation upstream of 

these genes18,26,27.

Cytokines diverge rapidly in immune response

We next asked whether different functional classes among responsive genes are 

characterised by varying levels of transcriptional divergence. For this, we divided them into 

categories based on their function (such as cytokines, transcriptional factors, kinases) or the 

processes in which they are known to be involved (such as apoptosis or inflammation).
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We observed that genes related to cellular defence and inflammation – most notably 

cytokines, chemokines and their receptors (hereafter “cytokines”) – tend to diverge in 

response significantly faster than genes involved in apoptosis or immune regulation 

(chromatin modulators, transcription factors, kinases and ligases) (Figs. 2d-e, Extended Data 

Fig. 4, and Supplementary Fig. 1).

We note that cytokines also have a higher transcriptional range in response to immune 

challenge (a higher fold change). Regressing the fold change from the divergence estimates 

results in reduction of the relative divergence of cytokines versus other responsive genes, but 

the difference still remains significant (Supplementary Fig. 2). Cytokine promoters are 

enriched in TATA-boxes (17% versus 2.5%, p= 1.1x10-3, Fisher's exact test) and depleted of 

CGIs (14% versus 69%, p= 1.6x10-9), suggesting that this promoter architecture is 

associated both with greater differences between species (response divergence) and larger 

changes between conditions (transcriptional range).

Cell-to-cell variability in immune response

Previous studies have shown that the innate immune response displays high variability 

across responding cells28,29. However, the relationship between cell-to-cell transcriptional 

variability and response divergence between species is not well-understood.

To study gene expression heterogeneity across individual cells, we performed single-cell 

RNA-seq in all species in a time course following immune stimulation. We estimated cell-to-

cell variability quantitatively using an established measure for variability: “distance to 

median” (DM)30.

We found a clear trend where genes that are highly divergent in response between species 

are also more variable in expression across individual cells within a species (Fig. 3a). The 

relationship between rapid divergence and high cell-to-cell variability holds true in both the 

955 dsRNA-responsive genes in fibroblasts and the 2,336 LPS-responsive genes in 

phagocytes. This can be observed across the stimulation time points and in different species 

(Extended data Figs. 5-6). We have analysed in depth the relationship between 

transcriptional divergence and cell-to-cell variability by using additional immune 

stimulations (Supplementary Figs. 8-9), and different experimental and computational 

approaches (Extended Data Fig 7 and Supplementary Figs. 10-13). Importantly, the trends 

we observed are not a result of technical biases due to low expression levels in either the 

bulk or the single-cell RNA-seq data (Supplementary Figs. 14-15).

Next, we examined the relationship between the presence of promoter elements – CGIs and 

TATA-boxes - and a gene’s cell-to-cell variability. We observed that genes that are predicted 

to have a TATA-box in their promoter have significantly higher transcriptional variability, 

while CGI-genes tend to have lower variability (Fig. 3b), in agreement with previous 

findings31. Thus, both transcriptional variability between cells (Fig. 3b) and transcriptional 

divergence between species (Fig. 2c) are associated with the presence of specific promoter 

elements.
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Transcriptional variability of cytokines

We subsequently compared the response divergence across species with the transcriptional 

cell-to-cell variability of three groups of responsive genes with different functions: 

cytokines, transcription factors, and kinases and phosphatases (hereafter “kinases”) (Fig. 3c 

and Extended Data Fig. 8). In contrast to kinases and transcription factors, many cytokines 

display relatively high levels of cell-to-cell variability (Extended Data Fig. 9), being 

expressed only in a small subset of responding cells (Extended Data Fig. 10). This has 

previously been reported for several cytokines29. For example, IFNB is expressed in only a 

small fraction of cells infected with viruses or challenged with various stimuli8,11,32. Here, 

we observe high levels of expression variability between cells for cytokines from several 

different families (e.g. IFNB, CXCL10, CCL2).

Cell-to-cell variability of cytokines remains relatively high in comparison with kinases and 

transcription factors during a time course of 2, 4 and 8hrs following dsRNA stimulation of 

fibroblasts (Extended Data Fig. 9). This pattern is similar across species, and can also be 

observed in LPS-stimulated phagocytes (Extended Data Fig. 9). Thus, the high variability of 

cytokines and their expression in a small fraction of stimulated cells across all time points is 

evolutionarily conserved.

We observed that cytokines tend to be co-expressed in the same cells, raising the possibility 

that their expression is coordinated (See Supplementary Information and Supplementary Fig 

16). We also identified genes whose expression is correlated with cytokines in human 

fibroblasts and showed that their orthologs are significantly co-expressed with cytokines in 

the other species. This set is enriched with genes known to be involved in cytokine 

regulation (Supplementary Table 5).

As an example, we focused on the genes whose expression is positively correlated with the 

chemokine CXCL10 in at least two species (Fig. 3d). This set includes four cytokines co-

expressed with CXCL10 (in purple), as well as known positive regulators of the innate 

immune response and cytokine production (in blue), such as the viral sensors MDA5 and 

RIG-I. This is in agreement with previous findings that suggest that IFNB expression is 

limited to cells where important upstream regulators are expressed at high enough 

levels8,11,32. Here, we showed that this phenomenon of co-expression with upstream 

regulators applies to a wide set of cytokines and is conserved across species. Importantly, we 

found that cytokines are not only co-expressed with their positive regulators but also with 

genes that are known to act as negative regulators of cytokine expression or cytokine 

signalling (in red), suggesting how cytokine expression and function is tightly controlled at 

the level of individual cells.

The Evolutionary landscape of innate immunity

Previously, many immune genes, including several cytokines and their receptors, have been 

shown to evolve rapidly in coding sequence3,33. However, it is not known how divergence 

in coding sequence relates to transcriptional divergence in innate immune genes. Using the 

set of 955 dsRNA-responsive genes in fibroblasts, we assessed the coding sequence 
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evolution in the three subsets of lowly, medium and highly divergent genes (as defined in Fig 

1c).

We compared the rate at which genes evolved in their coding sequences with their response 

divergence by considering the ratio between non-synonymous (dN) to synonymous 

substitutions (dS). We observed that genes that rapidly evolve in transcriptional response 

have higher coding sequence divergence (higher dN/dS values) than dsRNA-responsive 

genes with low response divergence (Fig 4a).

Rapid gene duplication and gene loss have been observed in several important immune 

genes34–39 and are thought to be a result of pathogen-driven pressure40,41. We have thus 

tested the relationship between a gene’s divergence in response and the rate at which the 

gene’s family has expanded and contracted in the course of vertebrate evolution. We found 

that transcriptionally divergent dsRNA-responsive genes have higher rates of gene gain and 

loss (Fig 4b) and consequently are also evolutionarily younger (Fig. 4c and Supplementary 

Fig. 17).

Previous reports suggest that younger genes tend to have fewer protein-protein interactions 

within cells42. Indeed, we observe that rapidly diverging genes tend to have fewer protein-

protein interactions (Fig 4d). Together, these results suggest that transcriptionally divergent 

dsRNA-responsive genes evolve rapidly through various mechanisms, including fast coding 

sequence evolution and higher rates of gene loss and duplication events, and have fewer 

protein interactions with other cellular proteins.

The interaction between pathogens and the host immune system is thought to be an 

important driving force in the evolution of both sides. We thus investigated the relationship 

between transcriptional divergence and interactions with viral proteins by compiling a 

dataset of known host-virus interactions in human6,43,44. Interestingly, genes with no 

known viral interactions have higher response divergence than genes with viral interactions 

(Fig 4e). Furthermore, the transcriptional divergence of genes targeted by viral 

immunomodulators45 - viral proteins that subvert the host immune system – is lower still 

(Fig 4e). These observations suggest that viruses have evolved to modulate the immune 

system by interacting with immune proteins that are relatively conserved in their response. 

Presumably, these genes cannot evolve away from viral interactions, unlike host genes that 

are less constrained46.

The summary of our results in Fig 4f highlights the difference in both the regulatory and 

evolutionary characteristics between cytokines and other representative dsRNA-responsive 

genes. Cytokines evolve rapidly through various evolutionary mechanisms and have higher 

transcriptional variability across cells. In contrast, genes that are involved in immune 

response regulation, such as transcription factors and kinases, are more conserved and less 

heterogeneous across cells. These genes have higher numbers of cellular protein-protein 

interactions, suggesting higher constraints imposed on their evolution. This group of 

conserved genes is more often targeted by viruses, revealing a relationship between host-

pathogen dynamics and the evolutionary landscape of the innate immune response.
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Discussion

In this work, we have charted the evolutionary architecture of the innate immune response. 

We show that genes rapidly diverging between species exhibit higher levels of variability in 

their transcription across individual cells. Both of these characteristics are associated with a 

similar promoter architecture, enriched with TATA-boxes and depleted of CGIs. Importantly, 

such promoter architecture is also associated with the high transcriptional range of genes 

during the immune response. Thus, transcriptional changes between conditions (stimulated 

versus unstimulated), species (transcriptional divergence), and individual cells (cell-to-cell 

variability) may all be mechanistically related to the same promoter characteristics. 

Interestingly, in yeast, TATA-boxes are enriched in promoters of stress-related genes, 

displaying rapid transcriptional divergence between species and high variability in 

expression30,47. This suggests intriguing analogies between the mammalian immune and 

yeast stress responses - two systems that were exposed to continuous changes in external 

stimuli during evolution.

In addition, we show that genes involved in regulation of the immune response – such as 

transcription factors and kinases, are relatively conserved in their transcriptional response. 

These genes might have stronger functional and regulatory constraints, due to their roles in 

multiple contexts and pathways, limiting their ability to evolve. This can be an Achilles’ heel 

used by pathogens to subvert the immune system. Indeed, we observe that viruses 

preferentially interact with conserved proteins of the innate immune response. Cytokines, on 

the other hand, diverge rapidly between species, stemming from their promoter architecture 

and from having fewer constraints imposed by intracellular interactions or additional non-

immune functions. We thus suggest that cytokines represent a successful host strategy to 

counteract rapidly evolving pathogens as part of the host-pathogen evolutionary arms race.

Cytokines also display high cell-to-cell variability and tend to be co-expressed together with 

other cytokines and cytokine’s regulators in a small subset of cells - a conserved pattern 

across species. Since prolonged or increased cytokine expression can result in tissue 

damage48–50, restricting cytokine production to only a few cells may enable a rapid, yet 

controlled, response across the tissue to avoid long-lasting and potentially damaging effects.

Methods

Ethical compliance

This project has been approved by the Wellcome Sanger Institute Animal Welfare and 

Ethical Review Body, and complied with all relevant ethical regulations regarding animal 

research and human studies. Human cells were obtained from the Hipsci project51, where 

they were collected from consented research volunteers recruited from the NIHR Cambridge 

BioResource (written consent was given). Human skin profiling was performed in 

accordance with protocols approved by the Newcastle Research Ethics Committee (REC 

approval 08/H0906/95+5). Macaque skin samples were obtained from animals assigned to 

unrelated non-infectious studies, provided by Public Health England’s National Infection 

Service in accordance with Home Office (UK) guidelines and approved by the Public Health 

England Ethical Review Committee under an appropriate UK Home Office project license.

Hagai et al. Page 8

Nature. Author manuscript; available in PMC 2019 April 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



(1) Cross-species dermal fibroblast stimulation with dsRNA and IFNB

Experimental methods

Tissue culture: We cultured primary dermal fibroblasts from low passage cells (below 10) 

that originated from females from four different species (human (European ancestry), rhesus 

macaque, black 6 mouse and brown Norway rat). All skin samples originated from 

shoulders. Stimulation experiments and library preparations were done in identical 

conditions across all species and for all genomics techniques. Details on the numbers of 

individuals used in each technique are listed in each technique’s section and in 

Supplementary Table 1.

Human cells were obtained from the Hipsci project (http://www.hipsci.org/51). Rhesus 

macaque cells were extracted from skin tissues that were incubated for 2hrs with 0.5% 

collagenase B (Roche; 11088815001) after mechanical processing, and then filtered through 

100µm strainers before being plated and passaged prior to cryo-banking. Rodent cells were 

obtained from PeloBiotech where they were extracted using a similar protocol. In vitro 
cultured fibroblasts from all four species resemble a particular in vivo cluster of dermal 

fibroblasts (see Supplementary Information).

Prior to stimulation, cells were thawed and grown for several days in ATCC fibroblast 

growth medium (Fibroblast Basal Medium (ATCC, ATCC-PCS-201-030) with Fibroblast 

Growth Kit-Low serum (ATCC, PCS-201-041) (supplemented with Primocin (Invivogen, 

ant-pm-1) and Pen/Strep (Life Technologies, Cat. Code: 15140122))– a controlled medium 

that has proven to provide good growing conditions for fibroblasts from all species, having 

slightly less than 24h doubling times. ~18hrs before stimulation, cells were trypsinized, 

counted and cells were seeded into 6-well plates (100,000 cells per well). Cells were 

stimulated with either: (1) 1ug/mL High-Molecular Weight poly I:C (Invivogen, Cat. Code: 

tlrl-pic) transfected with 2uL/mL Lipofectamin 2,000 (ThermoFisher, Cat Number 

11668027); (2) mock transfected with Lipofectamin 2,000; (3) stimulated with 1,000 IU of 

IFNB for 8 hours (human IFNB - 11410-2 (for human and macaque cells); rat IFNB - 

13400-1; mouse IFNB – 12401-1; all IFNs were obtained from PBL, and had activity units 

based on similar virological assays); or (4) left untreated. Interferon stimulations were used 

as a control, to study how the genes upregulated in the secondary wave of innate immune 

response diverge between species.

Additional samples in human and mouse were stimulated with 1,000 IU of Cross-

mammalian IFN (CMI, or Universal Type I IFN Alpha, PBL, Cat Number 11200-1). The 

latter stimulation was done to assess the effects of species-specific and batch-specific IFNB.

In all the above-mentioned stimulations, we used a longer time course for single-cell RNA-

seq than for the bulk RNA-seq. This was done for two main reasons: (1) In the bulk, we 

chose to focus on one main stimulation time point for simplicity and to obtain an intuitive 

fold change between stimulated and unstimulated conditions. (2) In single-cells, when 

studying cell-to-cell variability, we chose to profile, in addition to the main stimulation time 

point, cells in earlier and later stages of the response. This is important for studying how the 

Hagai et al. Page 9

Nature. Author manuscript; available in PMC 2019 April 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.hipsci.org/


dynamics and magnitude of the response affect gene expression variability between 

responding cells.

We note that the poly I:C we used was tested negative for the presence of bacterial beta-

endotoxin using a coagulation test (PYROGENT Plus, 0.06 EU/ml Sensitivity, Cat No 

N283-06).

Bulk RNA sequencing

Library preparation and sequencing: For bulk transcriptomics analysis, individuals from 

different species were grown in parallel and stimulated with dsRNA, IFNB (and cross-

mammalian IFN) and with their respective controls. In total, samples from 6 humans, 6 

macaques, 3 mice and 3 rats were used. Total RNA was extracted using the RNeasy Plus 

Mini kit (Qiagen, Cat Number 74136), using QIAcube (Qiagen). RNA was then measured 

using a Bioanalyzer 2100 (Agilent Technologies), and samples with RIN<9 were excluded 

from further analysis (one macaque sample stimulated with poly I:C and its control).

Libraries were produced using the Kapa Stranded mRNA-seq Kit (Kapa Biosystems, Kit 

code: KK8421). The Kapa library construction protocol was modified for automated library 

preparation by Bravo (Agilent Technologies). cDNA was amplified in 13 PCR cycles, and 

purified by Ampure XP beads (Beckman Coulter, Cat Number A63882) (1.8x volume) using 

Zephyr (Perkin Elmer). Pooled samples were sequenced on an Illumina HiSeq 2500 

instrument, using paired-end 125-bp reads.

ChIP sequencing

Library preparation and sequencing: Samples from three individuals from each of the four 

species were grown and stimulated (with poly I:C for 4 hours or left untreated, as described 

above) in parallel to samples collected for bulk RNA-seq. Following stimulation, sample 

were crosslinked in 1% HCHO (prepared in 1X DPBS) at room temperature for 10 minutes, 

and HCHO was quenched by the addition of glycine at a final concentration of 0.125M. 

Cells were pelleted at 4°C at 2000xg, washed with ice-cold 1X DPBS twice, and snapped 

frozen in liquid nitrogen. Cell pellets were stored in -80°C until further stages were 

performed. ChIPmentation was performed according to version 1.0 of the published 

protocol52 with a few modifications (see additional details in Supplementary Methods).

Library preparation reactions contained the following reagents: 10ul purified DNA (from the 

above procedure), 2.5ul PCR Primer Cocktails (Nextera kit, Illumina, Cat Number 

FC-121-1030), 2.5ul N5xx (Nextera index kit, Illumina Cat Number FC-121-1012), 2.5ul 

N7xx (Nextera index kit, Illumina, Cat Number FC-121-1012), 7.5ul NPM PCR Master Mix 

(Nextera kit, Illumina, Cat Number FC-121-1030). PCR cycles were as follows: 72°C, 5 

mins; 98°C, 2 mins; 98°C, 10 secs, 63°C, 30 secs, 72°C, 20 secs] X 12; 10°C hold.

Amplified libraries were purified by double AmpureXP beads purification: first with 0.5X 

bead ratio, keep supernatant, second with 1.4X bead ratio, keep bound DNA. Elution was 

done in 20ul Buffer EB (QIAGEN).
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1ul of library was run on a Bioanalyzer (Agilent Technologies) to verify normal size 

distribution. Pooled samples were sequenced on an Illumina HiSeq 2000 instrument, using 

paired-end 75-bp.

Single-Cell RNA sequencing

Flow cytometry: For scRNA-seq, we performed two different biological replicates, with 

each replicate having one individual from each of the four studied species. A time course of 

dsRNA stimulation of 0, 4, and 8hrs was used in one replicate (divided into two technical 

replicates), while a second replicate included a time course of 0, 2, 4, and 8hrs. Poly I:C 

transfection was done as described above. In the case of sorting with IFNLUX, we used 

rhodamine-labelled poly I:C.

Cells were sorted with either Beckman Coulter MoFlo XDP (first replicate) or Becton 

Dickinson INFLUX (second replicate) into wells containing 2uL of Lysis Buffer (1:20 

solution of RNase Inhibitor (Clontech, Cat Number 2313A) in 0.2% v/v Triton X-100 

(Sigma-Aldrich, Cat Number T9284), spun down and immediately frozen at -80°.

When sorting with MoFlo, a pressure of 15psi was used with a 150µm nozzle, using the 

‘Single’ sort purity mode. Dead or late-apoptosis cells were excluded using Propidium 

Iodide at 1µg/ml (Sigma, Cat Number P4170) and single cells were selected using FSC W vs 

FSC H. When sorting with INFLUX, a pressure of 3psi was used with a 200µm nozzle, with 

the “single” sort mode. Dead or late-apoptosis cells were excluded using 100ng/ml DAPI (4',

6-diamidino-2-phenylindole) (Sigma, Cat Number D9542). DAPI was detected using the 

355nm laser (50mW) using a 460/50nm bandpass filter. Rhodamine was detected using the 

561nm laser (50mW), using a 585/29nm bandpass filter. Single cells were collected using 

the FSC W vs FSC H.

Library preparation from full-length RNA from single cells and sequencing: Sorted plates 

were processed according to the Smart-seq2 protocol53: Oligo-dT primer (IDT), dNTPs 

(ThermoFisher, Cat Number 10319879) and ERCC RNA Spike-In Mix (1:25,000,000 final 

dilution, Ambion, Cat Number 4456740) were added to each well, and Reverse 

Transcription (using 50U SmartScribe, Clontech Cat Number 639538) and PCR were 

performed following the original protocol with 25 PCR cycles. cDNA libraries were 

prepared using Nextera XT DNA Sample Preparation Kit (Illumina, Cat Number 

FC-131-1096), according to the protocol supplied by Fluidigm (PN 100-5950 B1). Quality 

Checks on cDNA were done using a Bioanalyser 2100 (Agilent Technologies). Libraries 

were quantified using the LightCycler 480 (Roche), pooled and purified using AMPure XP 

beads (Beckman Coulter) with Hamilton 384 head robot (Hamilton Robotics). Pooled 

samples were sequenced on an Illumina HiSeq 2500 instrument, using paired-end 125-bp 

reads.

Computational methods

Cross-species response divergence

Read mapping to annotated transcriptome: For bulk RNA-Seq samples, adaptor sequences 

and low-quality score bases were first trimmed using Trim Galore (version 0.4.1) (with the 
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parameters “--paired --quality 20 --length 20 -e 0.1 --adapter AGATCGGAAGAGC”). 

Trimmed reads were mapped and gene expression was quantified using Salmon (version 

0.6.0)54 with the following command: "salmon quant -i [index_file_directory] -l ISR -p 8 --

biasCorrect --sensitive --extraSensitive -o [output_directory] -1 -g 

[ENSEMBL_transcript_to_gene_file] --useFSPD --numBootstraps 100". Each sample was 

mapped to its respective species’ annotated transcriptome (downloaded from ENSEMBL, 

version 84: GRCh38 for human, MMUL_1 for macaque, GRCm38 for mouse, Rnor_6.0 for 

rat). We only included the set of coding genes (*.cdna.all.fa files). We removed annotated 

secondary haplotypes of human genes by removing genes with “CHR_HSCHR”.

Quantifying differential gene expression in response to dsRNA: To quantify differential 

gene expression between treatment and control for each species and for each treatment 

separately, we used edgeR (version 3.12.1)55 using the rounded estimated counts from 

Salmon. This was done only for genes that had a significant level of expression in at least 

one of the four species (TPM>3 in at least N-1 libraries, where N is the number of different 

individuals we have for this species with libraries that passed quality control). Differential 

expression analysis was performed using the edgeR exact test, and p-values were adjusted 

for multiple testing by estimating the false discovery rate (FDR).

Conservation and divergence in response

Fold change-based phylogeny: We compared the overall change in response to treatment 

(dsRNA or IFNB) between pair of species, by computing the Spearman correlation of the 

fold change in response to treatment across all one-to-one orthologs that were expressed in 

at least one species (Extended Data Fig. 1a-h). Fold change was calculated with edgeR, as 

described above. Spearman correlations of all expressed genes appear in grey. Correlations 

of the subset of differentially expressed genes (genes with an FDR-corrected p-value<0.01 in 

at least one of the compared species) appear in black.

In panels a-c, we show comparisons in response to dsRNA. In panels d-f, we show 

comparisons in response to IFNB, which we use here to study the similarity of the secondary 

immune response between species.

We constructed a tree based on gene’s change in expression in response to dsRNA and to 

IFNB, using expressed genes that had one-to-one orthologs across all four species and were 

expressed in at least one species in at least one condition (Extended Data Fig 1i). We used 

hierarchical clustering, with the hclust command from the stats R package, with the distance 

between samples computed as 1-ρ, where ρ is the pairwise Spearman correlation between 

each pair of species mentioned above (a greater similarity, reflected in a higher correlation, 

results in a smaller distance) and “average” as the clustering method.

The above-mentioned analyses focus on one-to-one orthologs between the compared 

species. In Supplementary Table 6, we quantify the similarity in response between species 

(based on Spearman correlations) when adding genes with one-to-many orthologs.

Quantifying gene expression divergence in response to immune challenge: To quantify 

transcriptional divergence in immune response between species, we focus on genes that have 
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annotated one-to-one orthologs across the studied species (human, macaque, mouse and rat). 

9,753 of the expressed genes have annotated one-to-one orthologs in all four species, out of 

which 955 genes are differentially expressed in human in response to dsRNA treatment 

(genes with an FDR-corrected p-value<0.01).

We define a measure of response divergence (based on a previous study56) by calculating 

the differences between the fold change estimates across the orthologs:

Response divergence = log[1 4 × ∑i, j (logFold_ChangePrimatei − logFold_ChangeRodent j)
2]

This measure takes into account the structure of the phylogeny, and gives a relative measure 

of divergence in response across all genes with one-to-one orthologs.

In order to consider differences between species, we here focus on between-clade 

differences (primates - rodents), rather than on within-clade differences. In this way, we map 

the most significant macro-evolutionary differences along the longest branches of our four-

species phylogeny. In addition, averaging within clades acts as a reduction of noise56.

We compared this divergence measure to two other measures that use models (and 

incorporate both between- and within-clade divergence) and show strong correlation 

between the divergence estimates across the three approaches (Supplementary Figures 3-4).

In most of the subsequent analyses, we focus on the 955 “dsRNA-responsive genes” – genes 

that are differentially expressed in response to dsRNA (genes that have an FDR-corrected p-

value<0.01 in human, and have annotated one-to-one orthologs in the other three species). 

For some of the analyses, we split these 955 genes based on quartiles, into genes with high, 

medium and low divergence (Figure 1c).

We also studied how imprecisions in the fold change estimates affect the response 

divergence estimates and subsequent analyses (Supplementary Figures 5-6).

Comparison of response divergence between different functional groups: To compare the 

divergence rates between sets of dsRNA-responsive genes that have different functions in the 

innate immune response, we split these 955 genes into the following functional groups (all 

groups are mutually-exclusive, and any gene that belongs to two groups was excluded from 

the latter group; human gene annotations were used):

We first grouped genes by annotated molecular functions: Viral sensors (genes that belong to 

one of the GO categories: GO:0003725 - double-stranded RNA binding, GO:0009597 - 

detection of virus; GO:0038187 - pattern recognition receptor activity), Cytokines, 

chemokines & their receptors (GO:0005125 cytokine activity; GO:0008009 chemokine 

activity, GO:0004896 - cytokine receptor activity; GO:0004950 - chemokine receptor 

activity), Transcription factors (taken from the Animal Transcription Factor DataBase 

(version 2.0)57), Chromatin modulators (GO:0016568 - chromatin modification, GO:

0006338 - chromatin remodelling, GO:0003682 - chromatin binding, GO:0042393- histone 

binding), Kinases and phosphatases (GO:0004672 - protein kinase activity; GO:0004721 - 
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phosphoprotein phosphatase activity), Ligases and deubiquitinases (GO:0016579 protein 

deubiquitination; GO:0004842 - ubiquitin-protein transferase activity GO:0016874 ligase 

activity), Other enzymes (mostly involved in metabolism rather than regulation - GO:

0003824 - catalytic activity). The divergence response values of these functional subsets 

were compared to the entire group of 955 dsRNA-responsive genes (Figures 2d-e).

Next, we grouped genes by biological processes that are known to be important in the innate 

immune response: Antiviral defence (GO:0051607 - defence response to virus), 

Inflammation (GO:0006954 - inflammatory response), Apoptosis (GO:0006915 - apoptotic 

process), and Regulation (GO annotations related to regulation of innate immune response 

pathways include only few genes. We thus used as the group of genes related to regulation, 

the merged group of genes that are annotated as transcription factors, chromatin modulators, 

kinases and phosphates or ligases and deubiquitinases, since all these groups include many 

genes that are known to regulate the innate immune response.)

Gene lists belonging to the mentioned GO annotations were downloaded using QuickGo58. 

The distribution of response divergence values for each of the functional groups was 

compared with the distribution of response divergence of the entire set of dsRNA-response 

genes. Cytokines, chemokines and their receptors are merged in Figs 2d-e & 3c. Analogous 

comparisons of functional groups in IFNB response (with 841 IFNB-responsive genes) are 

shown in Supplementary Figure 1. See additional analyses in Supplementary Information.

Conservation of active chromatin marks analysis

Alignment and peak calling of ChIP-seq reads: ChIP-seq reads were trimmed using 

trim_galore (version 0.4.1) with “--paired --trim1 --nextera” flags. The trimmed reads were 

aligned to the corresponding reference genome (hg38 for human, rheMac2 for macaque, 

mm10 for mouse, rn6 for rat – all these genomes correspond to the transcriptomes used for 

RNA-Seq mapping) from the UCSC Genome Browser59 using bowtie2 (version 2.2.3) with 

default settings60. In all four species, we removed the Y chromosome. In the case of human, 

we also removed all alternative haplotype chromosomes. Following alignment, low-

confident mapped and improperly-paired reads were removed by samtools61 with “-q 30 –f 

2” flags.

Enriched regions (peaks) were called using MACS2 (v 2.1.1)62 with a corrected p-value 

cutoff of 0.01 with “-f BAMPE -q 0.01 -B --SPMR” flags, using input DNA as control. The 

genome sizes (the argument for “-g” flag) used were “hs” for human, “mm” for mouse, 

3.0e9 for macaque and 2.5e9 for rat. Peaks were considered reproducible when they were 

identified in at least two of the three biological replicates and overlapped by at least 50% of 

their length (non-reproducible peaks were excluded from subsequent analyses). 

Reproducible peaks were then merged to create consensus peaks from overlapping regions 

of peaks from the three replicates by using mergeBed from the bedtools suite63.

Gene assignment and conservation of active promoters and enhancers: We subsequently 

linked human peaks with the genes they might be regulating as follows: H3K4me3 

consensus peak was considered the promoter region of a given gene if its centre was 
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between 2kb upstream and 500bp downstream of the annotated TSS of the most abundantly-

expressed transcript of that gene.

Similarly, H3K27ac was considered the enhancer region of a given gene if its centre was in a 

distance above 1kb and below 1Mb, and there was no overlap (of 1bp or more) with any 

H3K4me3 peak.

In each case where, based on the distance criteria, more than a single peak was linked to a 

gene (or more than a single gene was linked to a peak), we took only the closest peak-gene 

pair (ensuring that each peak will have up to one gene and vice versa).

To compare active promoters and enhancers between species, we excluded any human peak 

that could not be uniquely mapped to the respective region in the other species. This was 

done by looking for syntenic regions of human peaks in the other three species by using 

liftOver64, and removing peaks that have either unmapped regions or more than one mapped 

region in the compared species. We considered syntenic regions with at least 10% sequence 

similarity between the species (minMatch=0.1), with a minimal length (minSizeQ and 

minSizeT) corresponding to the length of the shortest peak (128bp in H3K4 and 142bp in 

H3K27).

We defined an active human promoter or enhancer as conserved if a peak was identified in 

the corresponding region of the other species (we repeated this analysis by comparing 

human with each of the other three species separately). We compared the occurrence of 

conserved promoters and enhancers in genes that are highly divergent in response to dsRNA 

with lowly divergent genes, and used Fisher’s exact test to determine statistical significance 

of the observed differences between highly and lowly divergent genes. Results are shown in 

Extended Data Figure 2.

Promoter sequence analysis: To calculate the total number of transcription factors bindings 

motifs in a gene’s active promoter region, we downloaded the non-redundant JASPAR core 

motif matrix (pfm_vertebrates.txt) from the JASPAR 2016 server65 and searched for 

significant matches for these motifs using FIMO66 in human H3K4me3 peaks. Peak’s 

TFBM density was calculated by dividing the total number of motif matches in a peak by the 

peak’s length. TBFM density values in human H3K4me3 peaks linked with highly and 

lowly divergent genes were compared (Fig. 2a).

PhyloP7 values were used to assess promoter sequence conservation67. Sequence 

conservation quantification was performed by taking the estimated nucleotide substitution 

rate for each nucleotide along the promoter sequence (500bp upstream of the TSS of the 

relevant human gene). When several annotated transcripts exist, the TSS of the most 

abundantly expressed transcript was used (based on bulk RNA data). The substitution rate 

values from all genes were aligned, based on their TSS position, and a mean for each of the 

500 positions was calculated separately for the group of genes with high, medium and low 

response divergence. Two-sample Kolmogorov-Smirnov test was used to compare the paired 

distribution of rates between the mean of the highly divergent and the mean of the lowly 

divergent sets of genes. To plot the mean values of the three sets of divergent genes, 
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geom_smooth function from the ggplot2 R package was used with default parameters (with 

loess as the smoothing method) (see Fig. 2b).

Human CpG island (CGI) annotations were downloaded from the UCSC genome table 

browser (hg38), and CGI genes were defined as those with a CGI overlapping their core 

promoter (300bp upstream of the TSS reference position, and 100bp downstream of it, as 

suggested previously18). Genes were defined as having a TATA box if they had a significant 

match to the Jaspar TATA box matrix (MA0108.1) in the 100bp upstream of their TSS by 

FIMO66 with default settings (we used a 100bp window due to possible inaccuracies in TSS 

annotations). (We note that only 28 out of 955 dsRNA-response genes had a matching 

TATA-box motif in this region). For both TATA and CGI analyses the promoter sequences of 

the human orthologs were used.

Cell-to-cell transcriptional variability analysis

Read mapping and quality control of single-cell RNA-seq (full-length RNA): Gene 

expression was quantified in a manner similar to the quantification for bulk transcriptomics 

libraries described above. Low quality cells were filtered using quality control criteria (cells 

with at least 100,000 mapped reads, with at least 2,000 expressed genes with TPM>3, with 

ERCC<10% and MT<40%). This QC filtering resulted in 240 cells from a first biological 

replicate, including two technical replicates (with a time course of 0, 4, 8 hours). In a second 

larger biological replicate (with a dsRNA stimulation time course of 0, 2, 4, 8 hours), 728 

cells passed QC. Results throughout the manuscript relate to the second cross-species 

biological replicate where a higher proportion of cells passed QC, and the lower quality first 

replicate data was not considered further.

Cell-to-cell variability analysis: To quantify gene’s biological cell-to-cell variability we 

have applied the DM (Distance to Median) approach - an established method, which 

calculates the cell-to-cell variability in gene expression, while accounting for confounding 

factors such as gene expression level30. This is done by first filtering out genes that are 

lowly expressed: For Smart-seq2 data we only included genes that have an average 

expression of at least 10 size-factor normalized reads (except for Extended Data Figure 9a, 

where we reduced the threshold to 5, to allow a larger number of genes to be included in the 

comparisons). This procedure was done to filter genes that display higher levels of technical 

variability between samples due to low expression. Secondly, to account for gene expression 

level, the observed cell-to-cell variability of each gene is compared with its expected 

variability, based on its mean expression across all samples and in comparison with a group 

of genes with similar levels of mean expression. This distance from mean value (DM), is 

also corrected by gene length (in the case of Smart-seq2 data), yielding a value of variability 

that can be compared across genes regardless of their length and mean expression values68. 

As a second approach, we used BASiCS69,70 (see details in Supplementary Information).

We note that the relationship observed in Figure 3a between response divergence and cell-to-

cell variability are not an artefact, stemming from differences in expression levels: (A) With 

respect to cell-to-cell variability, gene’s expression level is controlled for by DM 

calculations, where expression level is regressed by using a running median (Supplementary 
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Figure 14). (B) Similarly, we can regress the expression level measured in bulk RNA-seq 

from the quantified response divergence by subtracting the running median of expression 

from the divergence estimates. When repeating the analysis comparing cell-to-cell 

variability versus regressed response divergence, the relationship between the two is 

maintained (Supplementary Figure 15).

Cytokine co-expression analysis: For the chemokine CXCL10, we built a network (using 

CytoScape71) of genes that correlate with CXCL10 in dsRNA-stimulated human fibroblasts 

and in at least one more species, using genes with a Spearman correlation value above 0.3 

(see Fig 3d and additional analyses in Supplementary Information).

Analysis of different evolutionary modes

Coding sequence evolution analysis: The ratio dN/dS of non-synonymous to synonymous 

codon substitutions, of human genes across the mammalian clade was obtained from a 

previous study that used orthologous genes from 29 mammals72. Distributions of dN/dS 

values were computed for each of the three groups of genes with low, medium and high 

divergence in response to dsRNA, and are plotted in Figs 4a.

Rate of gene gain and loss analysis: The significance at which gene’s family has 

experienced higher rate of gene gain and loss in the course of vertebrate evolution, in 

comparison with other gene families, was retrieved from ENSEMBL73. The statistics 

provided by ENSEMBL is calculated based on the CAFE method74, which estimates the 

global birth and death rate of gene families and identifies gene families that have accelerated 

rates of gain and loss. Distributions of the p-values from this statistic were computed for 

each of the three groups of genes with low, medium and high divergence in response to 

dsRNA and are plotted as the negative logarithm values in Fig 4b.

Gene age analysis: Gene age estimations were obtained from ProteinHistorian75. To ensure 

that the results are not biased by a particular method of ancestral protein family 

reconstruction or by specific gene family assignments, we used eleven different estimates for 

mammalian genes (combining five different databases of protein families with two different 

reconstruction algorithms for age estimation, as well as an estimate from the 

phylostratigraphic approach). For each gene, age is defined with respect to the species tree, 

where a gene’s age corresponds to the branch in which its family is estimated to have 

appeared (thus, larger numbers indicate evolutionarily older genes).

Data for gene age in comparison with divergence in response to dsRNA is shown in Fig 4c 

(using Panther7 phylogeny and Wagner reconstruction algorithm) and in Supplementary 

Figure 17a (for all 11 combinations of gene family assignments and ancestral family 

reconstructions). See additional analyses in Supplementary Information.

Cellular protein-protein interactions analysis: Data on number of experimentally-validated 

protein-protein interactions (PPIs) for human genes was obtained from STRING (version 

10)76. Distributions of PPIs for genes with low, medium and high divergence in response to 

dsRNA are plotted in Fig 4d.
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Host-virus interactions analysis: Data on host-virus protein-protein interactions was 

downloaded from the VirusMentha database43, and combined with two additional studies 

that have annotated host-virus protein-protein interactions6,44. We split the 955 dsRNA-

response genes into genes with known viral interactions (genes whose protein products were 

reported to interact with at least one viral protein), and genes with no known viral 

interactions: “Viral Interactors” and “No viral Interactions” respectively, in Figure 4e. In 

addition, we define a subset of genes within the viral interactors set: those known to interact 

with viral proteins that are immunomodulators (proteins known to target the host immune 

system and modulate its response, obtained from Pichlmair, A. et al.45).

We note that the results presented in Figure 4e are in agreement with previous analyses that 

are based on all human genes and on coding sequence evolution46. However, the overlap in 

the sets of genes between the previous analyses and the one presented here is small (e.g. in 

Dyer et al., 200946 there are 535 human genes with known interactions with pathogens, 57 

of which overlap with the 955 genes that are the basis of the current analysis).

(2) Additional experiments with human fibroblasts and human skin tissue

Additional experiments were performed with human dermal fibroblasts and with cells 

extracted from human skin tissues to study in greater detail the relationship between 

response divergence across species and cell-to-cell variability. See Supplementary Methods 

and Supplementary Discussion for details.

(3) Cross-species bone marrow-derived phagocyte stimulation with LPS and dsRNA

Experimental procedures

Tissue culture: Primary bone marrow-derived mononuclear phagocytes originating from 

females of four different species (black 6 mouse, brown Norway rat, rabbit and pig) were 

obtained from PeloBiotech. 24 hours before the start of the stimulation time course, cells 

were thawed and split into 12-well plates (500,000 cells per well). Cells were stimulated 

with either: (1) 100ng/mL lipopolysaccharide (LPS) (Invivogen, Cat. Code: tlrl-smlps), or 

with (2) 1ug/mL High-Molecular Weight poly I:C (Invivogen, Cat. Code: tlrl-pic) 

transfected with 2uL/mL Lipofectamin 2,000 (ThermoFisher, Cat Number 11668027). LPS 

stimulation time courses of 0, 2, 4, 6 hours were performed for all species. Poly I:C 

stimulations were performed for rodents for 0, 2, 4, 6 hours. We also processed cells for bulk 

RNA-Seq for 0 and 4 hours stimulation time points. Details on the individuals used in each 

technique are listed in Supplementary Table 2.

Library preparation for single cells using microfluidic droplet cell capture: Following 

stimulation, cells were collected using Cell Dissociation Solution Non-enzymatic (Sigma-

Aldrich, Cat No C5914), washed and resuspended in 1xPBS with 0.5% (w/v) BSA. Cells 

were then counted and loaded on the 10x Chromium machine aiming for a targeted cell 

recovery of 5,000 cells according to the manual. Libraries were prepared following the 

Chromium™ Single Cell 3' v2 Reagent Kit Manual77. Libraries were sequenced on Illumina 

HiSeq 4000 instrument with 26bp for read 1 and 98bp for read 2.
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Library preparation and sequencing for Bulk RNA-Sequencing: Total RNA was 

extracted and libraries were prepared as described in the fibroblasts section. Pooled samples 

were sequenced on an Illumina HiSeq 4000 instrument, using paired-end 75-bp reads.

Computational methods

Quantifying gene expression in bulk RNA transcriptomics: Adaptor sequences and low-

quality score bases were trimmed using Trim Galore (version 0.4.1). Trimmed reads were 

mapped and gene expression was quantified using Salmon: (version 0.9.1)54 with the 

following command: "salmon quant -i [index_file_directory] / -l ISR -p 8 --seqBias --gcBias 

--posBias -q -o [output_directory] -1 -g [ENSEMBL_transcript_to_gene_file] --useVBOpt --

numBootstraps 100". Mouse samples were mapped to mouse transcriptome (ENSEMBL, 

version 84). We note that we used the bulk data only for TSS analysis. For differential 

expression analysis, we used an in silico bulk from the single-cell data (see below).

Quantifying gene expression in microfluidic droplet cell capture data: Microfluidic 

droplet cell capture data was first quantified using 10X Genomics’ Cell Ranger Single-Cell 

Software Suite (version 2.0, 10x Genomics Inc)77 against the relevant genome (ENSEMBL, 

version 84). We removed cells with less than 200 genes or more than 10% mitochondrial 

reads. To remove potential doublets, we excluded the top 10% of cells expressing the highest 

numbers of genes. Genes expressed in less than 0.5% of the cells were excluded from the 

calculations. We then filtered cells that express less than 10% of the total number of filtered 

genes.

Since bone marrow-derived phagocytes may include secondary cell populations, we focused 

our analysis on the major cell population. We identified clusters within each dataset, using 

the Seurat78 functions RunPCA, followed by FindClusters (using 20 dimensions from the 

PCA, default perplexity and a resolution of 0.1) and have taken the cells belonging to the 

largest cluster for further analysis, resulting in a less heterogeneous population of cells. 

Lower resolution of 0.03 was used for rabbit-LPS4, rabbit-LPS2, mouse-PIC2, mouse-PIC4; 

and 0.01 for rabbit-LPS6.

Quantifying gene expression divergence in response to immune challenge: We created 

an in silico bulk table, by summing up the UMIs of the post-QC single cells belonging to the 

largest cluster of cells, in each of the samples. We then used the three replicates in 

unstimulated conditions and in 4 hours LPS stimulation to perform a differential expression 

analysis using DESeq279 Wald test, and p-values were adjusted for multiple testing by 

estimating the false discovery rate (FDR). A similar procedure was performed with mouse 

and rat dsRNA stimulation (with 4 hours dsRNA stimulation versus unstimulated 

conditions).

To quantify transcriptional divergence in immune response between species, we focus on 

genes that have annotated one-to-one orthologs across the studied species.

We define a measure of response divergence by calculating the differences between the fold 

change estimates across the orthologs:
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Response divergence = log[1 3 × ∑ j (logFold_Change Pig − logFold_Change Glire j)
2]

For each gene, the fold change in the outer group (pig), is subtracted from the fold change in 

the orthologs of the three Glires (mouse, rat and rabbit), and the average of the square values 

of these subtractions is taken as the response divergence measure. In most of the analyses, 

we focus on the 2,336 “LPS-responsive genes” – genes that are differentially expressed in 

response to LPS (genes that have an FDR-corrected p-value<0.01 in mouse, and have 

annotated one-to-one orthologs in the other three species).

Promoter elements, gene function and cell-to-cell variability analyses: Promoter 

elements (TATA and CGIs), gene function and cell-to-cell variability analyses were 

performed as described in the fibroblasts section. Mouse genes were used as the reference 

for gene function and TSS annotations. For variability analysis, we used one representative 

replicate out of three.

Statistical analysis and reproducibility: Statistical analyses were done with R version 

3.3.2 for Fisher's exact test, Two-sample Kolmogorov-Smirnov test and Mann-Whitney test. 

Data in boxplots (in all relevant panels) represent the median, first quartile and third quartile 

with lines extending to the furthest value within 1.5 of the inter-quartile range (as 

implemented by the R function geom_boxplot). Violin plots show the kernel probability 

density of the data (as implemented by the R function geom_violin).

All cross-species bulk RNA-Seq replicates were successful, except for one macaque 

individual where the treated sample had a low RNA quality and was removed from the 

analysis (along with the matching control). All cross-species ChIP-Seq replicates were 

successful. Cross-species scRNA-seq of fibroblasts was performed in two biological 

replicates. Results throughout the manuscript relate to the second cross-species biological 

replicate where a higher proportion of cells passed technical QC. Three out of three 

replicates for each species and condition were successful when preparing single-cell libraries 

for mononuclear phagocytes, except for two libraries that failed at the emulsion preparation 

stage. Two out of two replicates of single-cell in situ RNA hybridization assay were 

performed and both are shown.
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Extended Data

Extended Data Figure 1. Fibroblast response to dsRNA and IFNB across species
To study the similarity in response to treatment across species, we plotted the fold change 

values of all expressed genes (with one-to-one orthologs) between pairs of species (human-

macaque, mouse-rat and human-mouse) in response to dsRNA (poly I:C) (a-c). As a control, 

we performed the same procedure with IFNB stimulations (d-f). Fold changes were inferred 

from differential expression analyses, determined by the exact test in the edgeR package6 
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and based on n=6, 5, 3, 3 individuals from human, macaque, rat and mouse, respectively. 

Spearman correlations between all expressed one-to-one orthologs are shown in grey, 

Spearman correlations between the subset of differentially expressed genes (FDR-corrected 

p-value<0.01 in at least one species) appear in black. Number of genes shown is n=11,035, 

11,005, 11,137, 10,851, 10,826, 10,957 in a-f, respectively. Genes are coloured in blue if 

they were differentially expressed (FDR-corrected p-value <0.01) in both species, in purple 

if they were differentially expressed in only one species, or in red if they were not 

differentially expressed. (g-h) Density plots of ratio of fold change in response to dsRNA or 

to IFNB: (g) comparison between human and macaque orthologs in dsRNA response; (h) 

comparison between human and mouse orthologs in IFNB response. (i) A dendrogram based 

on the fold change in response to dsRNA or to IFNB across 9,835 one-to-one orthologs in 

human, macaque, rat and mouse.
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Extended Data Figure 2. Correspondence of transcriptional divergence and divergence of active 
promoters and enhancers
A comparison of divergence in transcriptional response to dsRNA with divergence of active 

chromatin marks– (a) active promoters (profiled using H3K4me3 in proximity to gene’s 

TSS) and (b) enhancers (H3K27ac without overlapping H3K4me3). Chromatin marks were 

linked to genes based on their proximity to the gene’s transcriptional start site (TSS). 

Chromatin marks were obtained from n=3 individuals in each of the four species, from 

fibroblasts stimulated with dsRNA or left untreated. The statistics are based on n=855, 818, 
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813 human genes that have a linked H3K4me3 mark with a syntenic region in macaque, rat 

and mouse, respectively (a); and on n=326, 241, 242 human genes that have a linked 

H3K27ac mark with a syntenic region in macaque, rat and mouse, respectively (b).

In each panel, we show the fraction of conserved marks between human and macaque, rat or 

mouse, in genes that have high, medium and low divergence in their transcriptional 

response. In each column, the histone mark’s signal was compared between human and the 

syntenic region in one of the three other species. If an active mark was found in the 

corresponding syntenic region, the linked gene was considered to have a conserved active 

mark (promoter or enhancer, depending on the tested mark).

The fractions of genes with conserved promoters (or enhancers) in each pair of species were 

compared between highly and lowly divergent genes using a one-sided Fisher’s exact test. 

When comparing active promoter regions of highly versus lowly divergent genes, we 

observe that lowly divergent genes have a significantly higher fraction of conserved marks in 

rodents. This suggests an agreement between divergence at the transcriptional and the 

chromatin levels in active promoter regions. In active enhancer regions, we do not observe 

these patterns, suggesting that the major contribution to divergence comes from the 

promoters.

Extended Data Figure 3. Comparison of response divergence of genes containing various 
promoter elements
Comparing response divergence between genes with and without a TATA-box and CGI: Left 

– fibroblasts (n=14, 14, 633, 294 differentially expressed genes with only TATA-box 

element, with both CGI and TATA-box elements, with only CGI, and with neither element in 

their promoters, respectively); right – phagocytes (n=13, 29, 1,718, 576 differentially 

expressed genes with only a TATA-box element, with both CGI and TATA-box elements, 

with only a CGI, and with neither element in their promoters, respectively). Genes with 
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TATA without a CGI have higher response divergence than genes with both elements. Genes 

with a CGI but without TATA diverge more slowly than genes with both elements. Genes 

with both elements do not significantly differ in their divergence than genes lacking both 

elements (one-sided Mann-Whitney test). Data in boxplots represent the median, first 

quartile and third quartile with lines extending to the furthest value within 1.5 of the inter-

quartile range.

Extended Data Figure 4. Response divergence of molecular processes upregulated in immune 
response
(a) Distributions of divergence values of n=955 dsRNA-responsive genes in fibroblasts and 

subsets of this group belonging to different biological processes. For each functional subset, 

the distribution of divergence values is compared with the set of 955 dsRNA-responsive 

genes using a one-sided Mann-Whitney test. FDR-corrected p-values are shown above each 

group, group size is shown inside each box.

(b) Distributions of divergence values of n=2,336 LPS-responsive genes in mononuclear 

phagocytes and subsets of this group belonging to different biological processes. For each 
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functional subset, the distribution of divergence values is compared with the set of 2,336 

LPS-responsive genes. FDR-corrected p-values (one-sided Mann-Whitney test) are shown 

above each group, group size is shown inside each box. Data in boxplots represent the 

median, first quartile and third quartile with lines extending to the furthest value within 1.5 

of the inter-quartile range.

Extended Data Figure 5. Cell-to-cell variability versus response divergence across species and 
conditions in fibroblasts dsRNA stimulation
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Cell-to-cell variability values, as measured with DM across individual cells, in comparison 

with response divergence between species (grouped into low, medium and high divergence). 

Variability values are based on n=29, 56, 55, 35 human cells, n=20, 32, 29, 13 rhesus cells, 

n=33, 70, 65, 40 rat cells, and n= 53, 81, 59, 30 mouse cells, stimulated with dsRNA for 0, 

2, 4 and 8 hours, respectively. Rows represent different dsRNA stimulation time points (0, 2, 

4 and 8 hours), and columns represent different species: human, macaque, mouse and rat. 

Highly divergent genes were compared with lowly divergent genes using a one-sided Mann-

Whitney test. Data in boxplots represent the median, first quartile and third quartile with 

lines extending to the furthest value within 1.5 of the inter-quartile range.
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Extended Data Figure 6. Cell-to-cell variability versus response divergence across species and 
conditions in mononuclear phagocytes LPS stimulation
Cell-to-cell variability values, as measured with DM across cells, in comparison with 

response divergence between species (grouped into low, medium and high divergence). 

Variability values are based on n=3,519, 4,321, 3,293, 2,126 mouse cells, n= 2,266, 2,839, 

1,963, 1,607 rat cells, n= 3,275, 1,820, 1,522, 1,660 rabbit cells, and n= 1,748, 1,614, 1,899, 

1,381 pig cells, stimulated with LPS for 0, 2, 4 and 6 hours, respectively. Rows represent 

different LPS stimulation time points (0, 2, 4 and 6 hours), and columns represent different 

species: mouse, rat, rabbit and pig. Highly divergent genes were compared with lowly 
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divergent genes using a one-sided Mann-Whitney test. Data in boxplots represent the 

median, first quartile and third quartile with lines extending to the furthest value within 1.5 

of the inter-quartile range.

Extended Data Figure 7. Cell-to-cell variability of cytokine expression in single cell in situ RNA 
hybridization assay combined with flow cytometry (PrimeFlow)
PrimeFlow measurement of two cytokine genes displaying high cell-to-cell variability in 

single-cell RNA-seq – IFNB and CXCL10. As controls, two genes matched on expression 

levels (ATXN2L and ADAM32) but displaying low cell-to-cell variability in single-cell 
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RNA-seq data are shown. Since the expression level of cytokines is at the low end of the 

distribution, we also chose two genes with middle-range expression values (ADAMTSL3 

and BRD2) as additional controls. The experiment was performed in n=2 independent 

replicates, originating from the same individual. Both replicates are shown.

(a) Pseudocolor contour plot for RNA target expression in dsRNA-stimulated human 

fibroblasts. X-axis shows area of side scatter (SSC-A) and Y-axis shows fluorescent signal 

for target RNA probes. RNA targets detected by same fluorescent channel are displayed 

together. Upper panel: IFNB and control genes: BRD2, ATXN2L, Type 1 probe, Alexa 

FluorTM 647. Lower panel: CXCL10, and controls: ADAMTSL3, ADAM32, Type 10 

probe, Alexa FluorTM 568. The cytokines display a broader range of fluorescence signal 

than the controls.

(b) Histograms comparing fluorescence of cytokine and control pairs (IFNB-BRD2 for Type 

1 probe and CXCL10-ADAM32 for Type 10 probe). The histograms show a bimodal 

distribution of expression signal for the two cytokines (IFNB, CXCL10, in red), but not for 

controls (in blue). This agrees with single-cell RNA-seq data where CXCL10 and IFNB 

display high levels of cell-to-cell variability.

Hagai et al. Page 30

Nature. Author manuscript; available in PMC 2019 April 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data Figure 8. Cell-to-cell variability levels and response divergence of cytokines, 
transcription factors and kinases in LPS stimulation of phagocytes
A scatter plot showing divergence in response to LPS across species and transcriptional cell-

to-cell variability in mouse mononuclear phagocytes following 4H of LPS treatment, in 

n=2,262 LPS-response genes. Genes from three functional groups - cytokines, transcription 

factors and kinases - are coloured in purple, green and beige, respectively. The distributions 

of divergence values of each of the three functional groups are shown above the scatter plot 

(with colours matching the scatter plot). The distributions of cell-to-cell variability values of 

these groups are shown to the right.
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Extended Data Figure 9. Cell-to-cell variability levels in cytokines, transcription factors and 
kinases across species and stimulation time points
Violin plots showing the distribution of cell-to-cell variability values (DM) of cytokines, 

transcription factors and kinases during immune stimulation.

Left: Fibroblast dsRNA stimulation time course. Number of cells used in each species (at 2, 

4, 8H dsRNA, respectively): human – 56, 55, 35; macaque – 32, 29, 13; rat – 70, 65, 40; 

mouse – 81, 59, 30. Right: Phagocyte LPS stimulation time course. Number of cells used in 

each species (at 2, 4, 6H LPS, respectively): mouse – 4321,3293,2126; rat – 2839, 1963, 

1607; rabbit – 1820, 1522, 1660; pig – 1614,1899,1381.

For both panels, colours as in Fig 3c. Comparisons between groups of genes were performed 

using one-sided Mann-Whitney tests. Violin plots show the kernel probability density of the 

data.
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Extended Data Figure 10. Percentage of expressing cells in cytokines, transcription factors and 
kinases
Histograms showing the percentage of fibroblasts expressing cytokines (top), transcription 

factors (middle) and kinases (bottom) following 4H dsRNA stimulation, in human, macaque, 

rat and mouse cells (based on n=55, 29, 65, 59 cells, respectively). The percentage of 

expressing cells is divided into 13 bins (x-axis). The y-axis represents the fraction of genes 

from this gene class (e.g. cytokines) that are expressed in each bin (e.g. in human, nearly 

30% of the cytokines genes (y-axis) are expressed in the first bin, corresponding to 

expression in fewer than 8% of the cells).
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Figure 1. Response divergence across species in innate immune response
(a) Study design: Left: Primary dermal fibroblasts from mouse, rat, human and macaque - 

stimulated with dsRNA or controls. Samples were collected for bulk and single-cell RNA-

seq and ChIP-seq. Right: Primary bone marrow-derived mononuclear phagocytes from 

mouse, rat, rabbit and pig - stimulated with LPS or controls. Samples were collected for bulk 

and single-cell RNA-seq.

(b) Left: Fold change in dsRNA stimulation in fibroblasts for example genes across the 

species (edgeR exact test, based on n=6, 5, 3, 3 individuals from human, macaque, rat and 

mouse, respectively). Right: Fold change in LPS stimulation for phagocytes in example 

genes across the species (Wald test implemented in DESeq2, based on n=3 individuals from 

each species). FDR-corrected p-values are shown (*** denotes p-value<0.001, ** p-

value<0.01, * p-value<0.05.)
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(c) Top: Estimating each gene’s level of cross-species divergence in transcriptional response 

to dsRNA stimulation in fibroblasts: (1) Using differential expression analysis, fold change 

in dsRNA response was assessed for each gene in each species. (2) 1,358 human genes were 

identified as differentially expressed (FDR-corrected q-value<0.01), of which 955 have one-

to-one orthologs across the four studied species. For each gene with one-to-one orthologs 

across all species, a response divergence measure was estimated using:

Response divergence = log[1 4 × ∑i, j (logFold_Change Primatei − logFold_Change Rodent j)
2]

(3) Genes were grouped into ‘low’, ‘medium’ and ‘high’ divergence based on their relative 

response divergence values for subsequent analysis.

Bottom: Estimating each gene’s level of cross-species divergence in LPS response in 

mononuclear phagocytes. A response divergence measure was estimated using:

Re sponse divergence = log[1 3 × ∑ j logFold_Change Pig − logFold_Change Glire j
2
]

(Where Glires are mouse, rat and rabbit).
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Figure 2. Transcriptionally divergent genes have unique functions and promoter architectures
(a) TFBM density in active promoters and response divergence: For each gene studied in 

fibroblast dsRNA stimulation, the total number of transcription factor binding motif (TFBM) 

matches in its H3K4me3 histone mark was divided by the length of the mark (human marks 

were used) (n=879 differentially expressed genes with ChIP-seq data). Highly divergent 

genes have higher TFBM density than lowly divergent genes (one-side Mann-Whitney test). 

(b) Promoter sequence conservation and response divergence in fibroblast dsRNA 

stimulation: Sequence conservation values are estimated with phyloP7 for 500bp upstream 
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of the transcription start site (TSS) of the human gene. Mean conservation values of each of 

the 500 base pairs upstream of the TSS are shown for highly, medium and lowly divergent 

genes (n=840 genes). Genes that are highly divergent have higher sequence conservation 

(one-sided Kolmogorov-Smirnov test). The 95% confidence interval for predictions from a 

linear model computed by geom_loess function is shown in grey. (c) Comparison of 

divergence in response of genes with and without a TATA-box and CpG Islands (CGIs) in 

fibroblast dsRNA stimulation and phagocyte LPS stimulation. TATA-box matches and CGI 

overlaps were computed with respect to the TSS of human genes in fibroblasts (n=955 

genes), and to the TSS of mouse genes in phagocytes (n=2,336). (d) Distributions of 

divergence values of 9,753 expressed genes in fibroblasts, 955 dsRNA-responsive genes and 

different functional subsets of the dsRNA-responsive genes (each subset is compared with 

the set of 955 genes using a one-sided Mann-Whitney test, FDR corrected p-values are 

shown). (e) Distributions of divergence values of 6,619 expressed genes in phagocytes, 

2,336 LPS-responsive genes and different functional subsets of the LPS-responsive genes 

(each subset is compared with the set of 2,336 genes using a one-sided Mann-Whitney test, 

FDR corrected p-values are shown).
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Figure 3. Cell-to-cell variability in immune response corresponds to response divergence
(a) Comparison of divergence in response across species with transcriptional variability 

between individual cells. Top: fibroblast dsRNA stimulation (variability is measured in n=55 

human cells, following 4H dsRNA stimulation). Bottom: Phagocyte LPS stimulation 

(variability is measured in n=3,293 mouse cells, following 4H LPS stimulation). Genes are 

split into highly, medium and lowly diverging genes based on their level of response 

divergence. Cell-to-cell variability values of highly divergent genes were compared with 

lowly divergent genes (one-sided Mann-Whitney test).
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(b) Comparison of cell-to-cell variability of genes with and without a TATA-box and CGI, in 

fibroblast dsRNA stimulation and phagocyte LPS stimulation (one-sided Mann-Whitney 

test). Cell-to-cell variability values are from DM estimations of human fibroblasts stimulated 

with dsRNA for 4H (n=55 cells) and from mouse phagocyte stimulated with LPS for 4H 

(n=3,293 cells).

(c) A scatter plot showing divergence in response to dsRNA in fibroblasts across species and 

transcriptional cell-to-cell variability in human cells following 4H of dsRNA stimulation, of 

n=684 dsRNA-response genes. Genes from three functional groups - cytokines, transcription 

factors and kinases - are in purple, green and beige, respectively. The distributions of 

divergence values of these groups are shown above the scatter plot. The distributions of their 

variability values are shown to the right.

(d) A network showing genes that positively correlate in expression with the chemokine 

CXCL10 across cells (Spearman correlation, ρ>0.3), in at least two species, following 

dsRNA treatment in fibroblasts (based on n=146, 74, 175, 170 human, macaque, rat and 

mouse cells, respectively). Cytokines are coloured in purple, positive regulators of cytokine 

expression are coloured in red, and negative regulators are coloured in blue. Colours of 

edges, from light to dark grey, reflect the number of species in which this pair of genes was 

correlated.
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Figure 4. Relationship of response divergence and other evolutionary modes
In a-d, dsRNA-responsive genes in fibroblasts are divided by level of response divergence 

into three groups - as in Fig 1c. In each panel a different measure is shown in the y-axis for 

each of these groups.

(a) Coding sequence divergence, as measured using dN/dS values across 29 mammals. 

Higher dN/dS values denote faster coding sequence evolution (n=567 genes with dN/dS 

values).
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(b) Rate at which genes are gained and lost within the gene family across the vertebrate 

clade (plotted as –logP). Higher values denote faster gene gain and loss rate (n=955 genes).

(c) Evolutionary age (estimated with Panther7 phylogeny and Wagner reconstruction 

algorithm). Values denote the branch number with respect to human (distance from human 

in the phylogenetic tree); higher values indicate older age (n=931 genes).

(d) Number of known physical interactions with other cellular proteins (n=955 genes).

(e) Distribution of transcriptional response divergence values among dsRNA-responsive 

genes whose protein products do not interact with viruses, that interact with at least one 

virus, and that interact with viral immunomodulators (n=648, 377, 25 genes, respectively). 

One-sided Mann-Whitney tests are used in panels a-e.

(f) A scaled heatmap showing: values of response divergence (as in Fig 1c), cell-to-cell 

variability (as in Fig 3a), coding sequence divergence (dN/dS values, as in 4a), gene age (as 

in 3c – younger genes have darker colours), number of cellular interactions (as in 4d) and 

number of host-virus interactions (as in 4e), for example genes from three functional groups: 

cytokines, transcription factors, and kinases. Values are shown in a normalized scale 

between 0-100, with the gene with the highest value assigned a score of 100. Missing values 

are coloured in white.
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